37 research outputs found

    Towards Real-time Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are poised to change the way computer systems interact with the physical world. We plan on entrusting sensor systems to collect medical data from patients, monitor the safety of our infrastructure, and control manufacturing processes in our factories. To date, the focus of the sensor network community has been on developing best-effort services. This approach is insufficient for many applications since it does not enable developers to determine if a system\u27s requirements in terms of communication latency, bandwidth utilization, reliability, or energy consumption are met. The focus of this thesis is to develop real-time network support for such critical applications. The first part of the thesis focuses on developing a power management solution for the radio subsystem which addresses both the problem of idle-listening and power control. In contrast to traditional power management solutions which focus solely on reducing energy consumption, the distinguishing feature of our approach is that it achieves both energy efficiency and real-time communication. A solution to the idle-listening problem is proposed in Energy Efficient Sleep Scheduling based on Application Semantics: ESSAT). The novelty of ESSAT lies in that it takes advantage of the common features of data collection applications to determine when to turn on and off a node\u27s radio without affecting real-time performance. A solution to the power control problem is proposed in Real-time Power Aware-Routing: RPAR). RPAR tunes the transmission power for each packet based on its deadline such that energy is saved without missing packet deadlines. The main theoretical contribution of this thesis is the development of novel transmission scheduling techniques optimized for data collection applications. This work bridges the gap between wireless sensor networks and real-time scheduling theory, which have traditionally been applied to processor scheduling. The proposed approach has significant advantages over existing design methodologies:: 1) it provides predictable performance allowing for the performance of a system to be estimated upon its deployment,: 2) it is possible to detect and handle overload conditions through simple rate control mechanisms, and: 3) it easily accommodates workload changes. I developed this framework under a realistic interference model by coordinating the activities at the MAC, link, and routing layers. The last component of this thesis focuses on the development of a real-time patient monitoring system for general hospital units. The system is designed to facilitate the detection of clinical deterioration, which is a key factor in saving lives and reducing healthcare costs. Since patients in general hospital wards are often ambulatory, a key challenge is to achieve high reliability even in the presence of mobility. To support patient mobility, I developed the Dynamic Relay Association Protocol -- a simple and effective mechanism for dynamically discovering the right relays for forwarding patient data -- and a Radio Mapping Tool -- a practical tool for ensuring network coverage in 802.15.4 networks. We show that it is feasible to use low-power and low-cost wireless sensor networks for clinical monitoring through an in-depth clinical study. The study was performed in a step-down cardiac care unit at Barnes-Jewish Hospital. This is the first long-term study of such a patient monitoring system

    Routing in Wireless Sensor Networks

    Get PDF

    Real-time Query Scheduling for Wireless Sensor Networks

    Get PDF
    Recent years have seen the emergence of wireless sensor network (WSN) systems that require high data rate real-time communication. This paper proposes Real-Time Query Scheduling (RTQS), a novel approach to conflict-free transmission scheduling for real-time queries in WSNs. We show that there is an inherent trade-off between prioritization and throughput in conflict-free query scheduling. RTQS provides three new real-time scheduling algorithms. The non-preemptive query scheduling algorithm achieves high throughput while introducing priority inversions. The preemptive query scheduling algorithm eliminates priority inversion at the cost of reduced throughput. The slack stealing query scheduling algorithm combines the benefits of preemptive and non-preemptive scheduling by improving the throughput while meeting query deadlines. We provide schedulability analysis for each scheduling algorithm. The analysis and advantages of our scheduling algorithms are validated through NS2 simulations

    Efficient Power Management based on Application Timing Semantics for Wireless Sensor Networks

    Get PDF
    This paper proposes Eļ¬ƒcient Sleep Scheduling based on Application Timing (ESSAT), a novel power manage-ment scheme that aggressively exploits the timing seman-tics of wireless sensor network applications. We present three ESSAT protocols each of which integrates (1) a light-weight traļ¬ƒc shaper that actively shapes the workload inside the network to achieve predictable timing proper-ties over multiple hops, and (2) a local scheduling algorithm that wakes up nodes just-in-time based on the tim-ing properties of shaped workloads. Our ESSAT protocols have several distinguishing features. First, they can save signiļ¬cant energy with minimal delay penalties. Second, they do not maintain TDMA schedules or communication backbones; as such, they are highly eļ¬ƒcient and suitable for resource constrained sensor platforms. Moreover, the protocols are robust in highly dynamic network environ-ments, i.e., they can handle variable multi-hop communication delays and aggregate workloads involving multiple queries, and can adapt to varying workload and network topologies. Our simulations showed that DTS-SS, an ES-SAT protocol, achieved an average node duty cycle 38-87% lower than SPAN, and query latencies 36-98% lower than PSM and SYNC

    Reliable Data Collection from Mobile Users for Real-Time Clinical Monitoring

    Get PDF
    Real-time patient monitoring is critical to early detection of clinical patient deterioration in general hospital wards. A key challenge in such applications is to reliably deliver sensor data from mobile patients. We present an empirical analysis on the reliability of data collection from wireless pulse oximeters attached to users. We observe that most packet loss occur from mobile users to their first-hop relays. Based on this insight we developed the Dynamic Relay Association Protocol (DRAP), a simple and effective mechanism for dynamically discovering the right relays for wireless sensors attached to mobile users. DRAP enables highly reliable data collection from mobile users without requiring any change to complex routing protocols. We have implemented DRAP on the TinyOS platform and a prototype clinical monitoring system. Empirical evaluation showed DRAP delivered at least 96% of pulse oximetry data from multiple users, while maintaining a radio duty cycle below 2.8% and reducing the RAM footprint by 65% when compared to CTP. Our results demonstrates the feasibility and efficacy of wireless sensor network technology for real-time clinical monitoring

    Radio Mapping for Indoor Environments

    Get PDF
    The efficient deployment and robust operation of many sensor network applications depend on deploying relays to ensure wireless coverage. Radio mapping aims to predict network coverage based on a small number of link measurements from sampled locations. Radio mapping is particularly challenging in complex indoor environments where walls significantly affect radio signal propagation. This paper makes the following key contributions to indoor radio mapping. First, our empirical study in an office building identifies a wall-classification model as the most effective model for indoor environments due to its balance between model complexity and accuracy. Second, we propose a practical algorithm to predict the Reception Signal Strength (RSS) of links in an indoor environment based on a small number of measurements at sampled locations. A key novelty of our algorithm lies in its capability to automatically classify walls into a small number of classes with different degrees of signal attenuation. Finally, we present a practical Radio Mapping Tool that can predict the coverage areas of relays based on a small number of link quality measurements in the environment. Empirical evaluation in an office building demonstrates that the Radio Mapping Tool reduces the false positive rate by as much as 41% compared to the classical log-normal radio propagation model, with a false negative rate of 9% based on sampling only 20% of the locations of interest

    Reliable Patient Monitoring: A Clinical Study in a Step-down Hospital Unit

    Get PDF
    This paper presents the design, deployment, and empirical study of a wireless clinical monitoring system that collects pulse and oxygen saturation readings from patients. The primary contribution of this paper is an in-depth clinical trial that assesses the feasibility of wireless sensor networks for patient monitoring in general (non-ICU) hospital units. The trial involved 32 patients monitored in a step-down cardiology unit at Barnes-Jewish Hospital, St. Louis. During a total of 31 days of monitoring, the network achieved high reliability (median 99.92%, range 95.21% - 100%). The overall reliability of the system was dominated by sensing reliability (median 80.55%, range 0.38% - 97.69%) of the pulse oximeters. Sensing failures usually occurred in short bursts, although long bursts were also present and were caused by the sensor disconnections. We show that the sensing reliability could be significantly improved through oversampling and by implementing a disconnection alarm system that incurs minimal intervention cost. Our results also indicate that the system provided sufficient resolution to support the detection of clinical deterioration in two patients who were transferred to the ICU. The results show the feasibility of using wireless sensor networks for patient monitoring and may guide future research. We also report lessons learned from the deployment in the clinical environments with patient users

    A Unified Specification Framework for Spatiotemporal Communication

    Get PDF
    Traditionally, network communication entailed the delivery of messages to speciļ¬c network addresses. As computers acquired multimedia capabilities, new applications such as video broadcasting dictated the need for real-time quality of service guarantees and delivery to multiple recipients. In light of this, a subtle transition took place as a subset of IP addresses evolved into a group-naming scheme and best-eļ¬€ort delivery became subjugated to temporal constraints. With recent developments in mobile and sensor networks new applications are being considered in which physical locations and even temporal coordinates play a role in identifying the set of desired recipients. Other applications involved in the delivery of spatiotemporal services are pointing to increasingly sophisticated ways in which the name, time, and space dimensions can be engaged in specifying the recipients of a given message. In this paper we explore the extent to which these and other techniques for implicit and explicit speciļ¬cation of the recipient list can be brought under a single uniļ¬ed frame-work. The proposed framework is shown to be expressive enough so as to oļ¬€er precise speciļ¬cations for ex-isting communication mechanisms. More importantly, its analysis suggests novel forms of communication relevant to the emerging areas of spatiotemporal service provision in sensor and mobile networks
    corecore